University of South Carolina ## **Scholar Commons** Theses and Dissertations Summer 2020 ## The Global Production Sharing and Economic Development: The Nexus of Preferential Trade Agreements and Unilateral Trade Handunnetti Naveen Mendis Wickremeratne Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Economics Commons #### **Recommended Citation** Wickremeratne, H. M.(2020). The Global Production Sharing and Economic Development: The Nexus of Preferential Trade Agreements and Unilateral Trade. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/6028 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu. # THE GLOBAL PRODUCTION SHARING AND ECONOMIC DEVELOPMENT: THE NEXUS OF PREFERENTIAL TRADE AGREEMENTS AND UNILATERAL TRADE by #### Handunnetti Naveen Mendis Wickremeratne Bachelor of Arts University of Colombo, 2017 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Arts in **Economics** Darla Moore School of Business University of South Carolina 2020 Accepted by: William R. Hauk, Director of Thesis Sarah Imlau, Reader Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Handunnetti Naveen Mendis Wickremeratne, 2020 All Rights Reserved. ## **DEDICATION** I would like to dedicate this to all the hardworking economists who believe in freer trade. ## **ACKNOWLEDGEMENTS** First and foremost, I would like to thank my thesis supervisor, Dr. William R. Hauk, without whom this would have been an impossible task. For inspiring me during the International Trade lectures and for encouraging me to take up a challenge that has proven to be a fruitful endeavor. I would also like to acknowledge Dr. Sarah Imlau for being the second reader of my thesis work and for the valuable comments given to improve this research work. I sincerely thank my academic supervisor, Dr. Chun-Hui Miao for his kind support throughout my masters journey and I am also thankful to all of my professors at Darla Moore School of Business. I am specially indebted to the Fulbright Programme for offering me this scholarship to pursue my masters at Darla Moore School of Business, University of South Carolina. Finally, I would like to thank my family for their support from the very beginning. ## **ABSTRACT** This study primarily attempts to investigate the causal relationship between Global Production Sharing and economic growth. Secondarily, the study attempts to identify the impact of Preferential Trade Agreements on Global Production Sharing. The study is based on secondary data for a panel of 12 Asian countries for the time period from 1999 to 2017. The methodology adopted for the study is both quantitative and qualitative. The empirical methodology is based on Cobb-Douglas production function, and panel fixed effects estimator is employed to derive the consistent estimates. The empirical findings of the study suggest that Global Production Sharing has a positive relationship with economic growth. The estimates of fixed effects model suggest that 10 percent increase in Global Production Network trade is associated with 1 percent increase in Gross Domestic Production Per Capita. More importantly, the study found that Global Production Sharing can enhance the economic development with implications of raised revenue, more employment and poverty reduction. Further, based on the review of literature, the study reveals that although the deep Preferential Trade Agreements can increase the countries' participation in production sharing, different tariff structures pertinent to different Preferential Trade Agreement member countries can hamper the utilization of an optimal Global Production Network due to different Rules of Origin. Finally, the study advocates for an innovative global trade paradigm empowered by the unilateral trade liberalization in order to safeguard the free trade economic phenomenon. ## TABLE OF CONTENTS | Dedication | iii | |---|------| | Acknowledgements | iv | | Abstract | V | | List of Tables | vii | | List of Abbreviations | viii | | Chapter 1: Introduction. | 1 | | 1.1 Problem Statement and Rationale | 5 | | Chapter 2: Literature Review | 6 | | Chapter 3: Methodology | 12 | | 3.1 Theoretical Foundations and Econometric Model | 13 | | Chapter 4: Results and Discussion | 17 | | Chapter 5: Conclusion | 27 | | References | 28 | | Appendix A: Parts and Components | 33 | ## LIST OF TABLES | Table 3.1: Variable Definitions, Means and Standard Deviations of the Data | 13 | |--|----| | Table 4.1: Estimates of Fixed Effects Models | 17 | | Table 4.2: Results of Hausman Specification Test | 17 | | Table 4.3: Estimates of Random Effects Models | 19 | | Table A 1: Parts and Components at the Five-Digit Level of SITC Rev 3 | 33 | ## LIST OF ABBREVIATIONS | AMNE Activity of Multinational Enterprise | |--| | FTA | | GDP Gross Domestic Product | | GPN | | GPS | | GVC | | HDD | | MFN | | NAFTA | | OECD Organization for Economic Cooperation and Development | | PTA | | RoO | | SITC Standard International Trade Classification | | WTO | ## **CHAPTER 1: INTRODUCTION** Western and European economies were dominated by mercantilism from 16th century to late 18th century. The term mercantilism was initially coined by Adam Smith in his book 'An Inquiry into the Nature and Causes of the Wealth of Nations', published in 1776. The mercantilist system is an economic system which advocates the establishment of a nationalistic wealthy economy that reinforces the state by discouraging imports and encouraging exports (Smith 1776). The ultimate objective of so-called system is to achieve a favorable trade balance which can convey gold and silver into the country while procuring sovereign economic prosperity. However, mercantilism was flawed owing to the fact that increased exports lead to more money in the country with rising prices and inflation resulting in expensive exports and cheaper imports (Hume 1969). Thereupon, the Smith's theory of absolute cost advantage also came into light with his book, Wealth of Nations in 1776. The theory of absolute cost advantage as a theory of free trade suggests the capability of one country to produce more of a product with the same amount of inputs than another country. Hence, a country with lesser input costs should produce and export while those goods where it incurs higher costs should be imported. Therefore, such a trade between two countries is a win-win outcome. Howbeit, the theory of absolute cost advantage fails if a country is cheap in the production of almost everything. Then, the country should only export (Ricardo 1817). Subsequently, David Ricardo in his book 'On the Principles of Political Economy and Taxation' in 1817 argued that it should be the comparative cost advantage, not the absolute cost advantage. Hence, the country should export the product which can be produced at a lower opportunity cost while importing the product with the higher opportunity cost. Consequently, in the 20th century Eli Heckscher and Bertil Ohlin developed a theory addressing two questions left largely unexplained by Ricardo: What determines comparative advantage and what effect does international trade have on the earnings of various factors of production in trading nations? (Carbaugh 2008). Their theory became known as the Heckscher-Ohlin theory, which suggests that capital abundant country should export capital intensive product while labor abundant country should export labor intensive product. This trend of trade theories came to an end with the emergence of New Trade Theory shaped by Krugman (1979). Krugman 'develops a simple, general equilibrium model of noncomparative advantage trade in which trade is driven by economies of scale, which are internal to firms because of the scale economies, markets are imperfectly competitive. Nonetheless, one can show that trade, and gains from trade, will occur, even between countries with identical tastes, technology, and factor endowments' (Krugman 1979, 469). These prominent trade theories mostly dominated the global trade until the dawn of the newest trade theory identified as Global Production Sharing (GPS) which is the break-up of the production process into geographically separated stages such as initial design, production of components and final assembly (Athukorala 2010). This international trade phenomenon is also known as Offshoring, Global Production Network (GPN) and Global Value Chain (GVC) (Feenstra 2010; Hiratsuka 2011; The World Bank 2017). The Thailand centered hard disk production is an exemplary case of GPS. Hard Disk Drive (HDD) production in Thailand consists of 15 percent total merchandise exports from Thailand and 70 percent of total world HDD exports. But HDDs are not entirely produced in Thailand where at least ten other countries participate in HDD production (Hiratsuka 2011). The Figure 1.1 depicts the case of Thailand centered HDD production. Figure 1.1: Thailand Centered HDD Production Source: Hiratsuka (2011). The emergence of GPS is a remarkable millstone in modern international trade. However, this emergence has been empowered by fast growing advanced production technology which enabled industries to slice the value chain in to components, while technological innovations in communication and transportation effaced the distance from one country to other, and finally, the influence of World Trade Organization (WTO) policy reforms on liberalizing trade barriers and investment (Jones and Kierzkowski 2000). This newest trade theory has unfolded the hidden potential of global integration by linking all the
countries in the world to produce global products. Hence, there will be a day in the near future that consumers will see a product tag which evinces the tagline 'Made in World'. The Apple iPhone and the Boeing Dreamliner are also two classic examples of such trade pattern (Carbaugh 2010). It has been a proven fact in the international trade literature that GPS has shaped the pattern of trade in the world. Yet, how countries participate in GPS matters for the impact on their development, which is a premise that should be probed. Vast number of studies conducted in this direction have proved that GPS has a significant potential of enhancing economic development in developing countries in the world (The World Bank 2019). Moreover, this new phenomenon in international trade strengthens export orientation with implications of employment generation and poverty reduction (Athukorala 2014). Simultaneously, rapidly transforming global trade has focused its attention on Preferential Trade Agreements (PTAs) to boost the gains of international trade. 'PTAs in the WTO include Generalized System of Preferences schemes (under which developed countries grant preferential tariffs to imports from developing countries), as well as other non-reciprocal preferential schemes granted a waiver by the General Council' (WTO 2019). If so, what would be the convergence of GPS and PTAs? It has been stated that countries have started to move towards deeper PTAs in the current global context. Certain studies in this juncture claims that deeper PTAs promote GPS (Laget et al. 2018) while others divulge that PTAs can generate negative effects on GPS (Bhagwati 2008). These two opposite premises twirl the global trade's attention towards unilateral trade. Therefore, it is quite clear that why pursue reciprocity when the world has unilateral trade. This is when any state can open its borders to international trade without waiting for others to reciprocate. Is not this so plain sailing? If so, why cannot nations practice unilateral free trade to enhance GPS and promote economic development? Given this backdrop, the paper attempts to answer these questions by giving potential insights to the phenomena of GPS, economic development and unilateral trade. #### 1.1 PROBLEM STATEMENT AND RATIONALE The existing literature that investigates the linkage between GPS and economic growth and the impact of PTA on GPS is limited. However, the review of limited literature on the impact of GPS on economic development of countries, suggests that GPS has a positive impact on enhancing the level of growth in the economy. More importantly, the existing literature in this direction has failed to empirically estimate the impact of GPS on economic growth. Hence, this creates a vacuum of literature in this regard. At this backdrop, this study attempts to empirically estimate the relationship between GPS and economic growth under the purview of Asian countries. The general objective of this study is to identify the economic relationship between the GPS and economic growth. The specific objectives include compiling a variable that measure the amount of GPS in respective Asian countries, empirically estimating the causal relationship between GPS and economic growth and identifying the impact of PTAs on GPS. المنارة للاستشارات ## CHAPTER 2: LITERATURE REVIEW Haddad (2007) conducted a study on trade integration in East Asia giving more emphasis on the role of China and production networks. The paper is based on a descriptive statistical analysis for the time period spanning from 1960 to 2004. He found that there has been a rapid increase in fragmentation in trade, majorly trade in parts and components in the East Asian region against the conventional trade pattern. According to him, so called fragmentation in trade is mainly due to four reasons. Firstly, the relatively more favorable policy setting for international production. Secondly, the agglomeration benefits arising from the early entry into this new form of specialization. Thirdly, considerable intercountry wage differentials in the region, lower trade and transport costs and finally, the specialization in products exhibiting increasing returns to scale. Haddad (2007) further states that the economic integration of China has positively affected the rapid increase in GPNs in the region.). Athukorala (2009) examined the implications of GPS for regional and global trade patterns in East Asia. The study is majorly based on United Nations-Comtrade data base for the time period from 1992 to 2007. He has incorporated a gravity model to examine the determinants of inter-country differences in network trade intensity, with an emphasis on East Asia's unique role in this new form of international exchange. As per his analysis, the GPS in East Asia has grown swiftly than the total world trade in manufacturing. Further, he advocates a more global integration rather than regional approach to trade. Hiratsuka (2011) investigated the case of production networks in Asia. The study is based on a micro level case study on procurement system of HDD assembler, operating in Thailand. The study found HDD components and parts were obtained from more overseas suppliers than from domestic suppliers through a production network. Further, he found that GPNs have developed more in the HDD industry than in the automobile industry due to lower transport costs affiliated to production of HDDs. Athukorala (2014) conducted a case study in Penang, Malaysia in order to understand how GPS has enabled Penang to be an export production hub in the world and to explore the policy options for developing countries to engage effectively in production networks. He identifies Penang as a unique example for a country which utilized its national development strategy to attract emerging opportunities of GPS. Further, the study found that through GPS, Penang was able to attract the major multinational enterprises in global electronics industry, which boosted the export growth in Penang by promoting its economic growth. Athukorala and Nasir (2012) researched the case of GPS and South-South trade with emphasis on the role of production sharing in global economic integration of the Southern economies in the world. This paper has initially utilized a descriptive statistical analysis on the emerging trends and patterns of South-South trade using a classification system in order to identify the trade based on GPS against the total recorded trade. Then, a standard gravity model has been employed to delineate the determinants of South-South and South-North trade. They found that global South-South trade has remarkably increased over the past two decades due to the growing engagement in the GPS by East Asian countries. Sen (2014) studied how GPNs can be drivers of South Asia's growth and regional integration by examining the role of economic corridors in facilitating the access of South Asian countries to GPNs. Sen (2014) found that South Asia has lagged behind the context of GPS compared to East Asian countries. Moreover, the study found that regional economic corridors in South Asia can increase the region's linkages to the GPNs of East Asia and can boost regional cooperation between South Asia, South East Asia and East Asia. Degain et al. (2017) researched the recent trends in global trade and GVCs in the world. This study attempts to answer how GVCs can explain the new developments in international trading mechanism and how this trend of parts and components crossing national boundaries matters for developing countries. They discerned that globalization and growth of global Gross Domestic Product (GDP) during 1995 to 2008 was empowered by the driving force of complex GVCs related cross border production activities. In contrast, the complex GVCs declined during 2012 to 2015 due to industrial upgrading occurred in emerging economies such as China with a declining processing trade. More importantly, Degain et al. (2017) argue that GVC related production activities have declined due to increased trade protectionism after the global financial crisis during 2008- Orefice and Rocha (2011) investigated the relationship between deep integration and GPNs. In this study, deep integration is captured by a set of indices constructed in terms of policy areas covered in PTAs. The methodology adopted for this study is estimation of an augmented gravity equation to investigate the impact of deep integration on GPNs. The finding of this study supports the premise that PTAs have a positive impact on GPNs. Hence, on average signing deeper agreements increases production network trade among member countries by 35 percentage points. Hayakawa and Yamashita (2011) examined the effect of PTAs in facilitating GPNs. Based on more than 250 PTAs with trade flows distinguished into parts and components and final goods for the period of 1979 to 2008, they estimated the augmented gravity equation to determine the effects of PTA formation on trade in parts and components. They conclude that concurrent effects of PTA formation on trade in parts and components are not identified through the model incorporated. In contrast, PTAs have positive and pervasive effects on trade in parts and components 6 years post-signing the PTA. Miroudot and Rigo (2019) investigated the impact of deep integration in PTAs on multinational production through production networks. The study has employed a time series panel data gravity equation based on Organization for Economic Cooperation and Development (OECD) analytical Activity of Multinational Enterprise (AMNE) database and the Design of Trade Agreements database for the time period spanning from 2000 to 2014. The results of the paper show that, on average, tariff reductions through PTAs have a positive impact on multinational production with a stronger effect for trading intermediate inputs or serving the final demand. Finally, the study suggests that rapid increase in PTAs
has facilitated the engagement in GVCs, thereby proliferating the multinational production. Bhagwati (2008) by studying the empirical cases of the contemporary international trade, reviewed how the proliferation of PTAs has become a menace to the world trading system. He argues that signing PTAs initiate preferences among countries in the trade that violates the principle of non-discrimination in trade. Thus, the existence of trade discriminations through PTAs can cause a great divide between large-scale firms and small-scale firms, resulting in losses for small-scale firms. Bhagwati (2008) further argues that PTAs comprise draconian requirements of capital flows and labor standards that endanger poor nations in the process of negotiating. Baldwin and Freund (2011) investigated the relationship between PTAs and multilateral liberalization. The study has incorporated existing literature in this direction and microeconomics theoretical framework designed by authors to investigate the aforementioned linkage. They attempted to analyze how regionalism through PTAs result in diverting trade away from the most productive global producers in favor of regional partners while generating welfare losses. Further, the study focuses on multilateralists' argument of identifying regional PTAs as external forces that hinder multilateralism resulting in erroneous equilibrium in the context where regional trade blocks maintain extraneous trade barriers. Bruhn (2014) examined the role of PTAs in the context of GVCs. In this study, he emphasizes the concern that whether developing countries promote trade at the cost of domestic policy autonomy. The methodology of the study is based on analyzing the effects of deep PTAs by reviewing literature on regional integration with rapid drive of GVC. The study reveals that PTAs can contribute to the participation in GVCs by eliminating traditional trade barriers at the cost of restricting policy autonomy. Eckhardt and Lee (2018) investigated the linkage between GVCs and firm preferences on PTA design by conducting a case study on the preferences and political strategies of tobacco firms during North American Free Trade Agreement (NAFTA) negotiations. The authors found supportive evidence towards the premise of highly productive firms generally being supportive of PTAs. However, such preferences of the firms on PTA design vary depending on firms' organization of their own GVCs. Finally, Eckhardt and Lee (2018) conclude that firms source their inputs from PTA partner countries or non-partner countries depending on their preferences on Rules of Origin (RoO). #### **CHAPTER 3: METHODOLOGY** The methodology adopted for this study includes both quantitative and qualitative approaches. The econometric methodology attempts to estimate the causal relationship between GPS and economic growth and the qualitative approach attempts to identify the impact of PTAs on GPS. This study is based on secondary data for a panel of 12 Asian countries (China, Hongkong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Sri Lanka, Thailand, Vietnam) for the time period from 1999 to 2017. The data are obtained for variables namely, Gross Domestic Product Per Capita – PPP, Gross Domestic Fixed Capital Formulation, Labor Force, Exports, Imports and Total Parts and Component Exports. The amount of GPN trade can be measured using exports of parts and components production (Yeats 2001). The data sources include both World Development Indicators and UN Comtrade databases. Moreover, total parts and component exports include data for more than 300 product categories at the five-digit level of Standard International Trade Classification (SITC) Revision 3.1 Please find the relevant product categories at the five-digit level of SITC Revision 3 in the Appendix. Table 3.1: Variable Definitions, Means and Standard Deviations of the Data (N = 228) | Variable | Description* | Mean | |----------|--|------------| | Y | Gross Domestic Product Per Capita – PPP in USD | 12984.88 | | | | (15795.46) | | K | Gross Domestic Fixed Capital Formulation in USD | 3.93e+11 | | | | (8.44e+11) | | L | Labor Force | 2.26e+08 | | | | (2069707) | | Open | Trade Openness (((Exports + Imports)/GDP) *100) | 130.40 | | | | (114.15) | | GPN | Global Production Network Trade measured using total parts | 5.05e+07 | | | and component exports in USD | (5.66e+07) | Note: Numbers in the parenthesis are standard deviations. ## 3.1 THEORETICAL FOUNDATION AND ECONOMETRIC MODEL The hypothesis tested in this study is that GPS stimulates economic growth, based on 12 Asian countries. The testing of this hypothesis includes estimating Cobb-Douglas production function derived from Solow Growth Model, combining capital and labor as follows. $$Y_{it} = A_{it} K_{it}^{\alpha} L_{it}^{\beta} \qquad (1)$$ Where *Y* is the real economic output, *K* is the capital stock, *L* is the labor force, and *A* is the technological progress. This production function can be extended by assuming that technological progress is influenced by trade openness and GPS. Hence, *A* can be specified as follows. $$A_{it} = \phi O_{it}^{\delta} G_{it}^{\rho} \tag{2}$$ Where (0) stands for trade openness and (G) stands for GPN trade. By substituting equation (2)into equation (1), following equation can be derived. $$Y_{it} = \phi O_{it}^{\delta} G_{it}^{\rho} K_{it}^{\alpha} L_{it}^{\beta} \qquad (3)$$ Moreover, taking the natural logs of such Per Capita terms, the following equation is derived. $$Y_{it} = \theta_0 + \theta_1 K_{it} + \theta_2 L_{it} + \theta_3 O_{it} + \theta_4 G_{it}$$ (4) Based on the equation (4), following equation is constructed plugging in nongeneric variables. $$lnY_{it} = \beta_0 + \beta_1 lnK_{it} + \beta_2 lnL_{it} + \beta_3 lnOpen_{it} + \beta_4 lnGPN_{it} + \varepsilon_{it}$$ (5) Based on the equation (5), panel fixed effect model is estimated. In this model there can be omitted variables that are correlated with the explanatory variables. Hence, fixed effect model is the most appropriate, given there might be neglected heterogeneity² (Wooldridge 2016). Under the fixed effect model, equation (5) can be rewritten by splitting the idiosyncratic error term ε_{it}) into time variant u_{it}) and time invariant, if not neglected heterogeneity v_{it}) error terms, as follows. $$lnY_{it} = \beta_0 + \beta_1 lnK_{it} + \beta_2 lnL_{it} + \beta_3 lnOpen_{it} + \beta_4 lnGPN_{it} + v_{it} + u_{it}$$ (6) By averaging each i in the equation (6) over time, the time dimension can be removed from the equation. Hence, the following equations can be derived. $$\overline{lnY_{l}} = \beta_{0} + \beta_{1}\overline{lnK_{l}} + \beta_{2}\overline{lnL_{l}} + \beta_{3}\overline{lnOpen_{l}} + \beta_{4}\overline{lnGPN_{l}} + \overline{v_{l}} + \overline{u_{l}}$$ (7) ² This is similar to unobserved heterogeneity which is a situation where a possible correlation is expected between observable variables and unobservable variables. $$lnY_{it} - \overline{lnY_t} = (\beta_0 - \beta_0) + \beta_1 \left(lnK_{it} - \overline{lnK_t} \right) + \beta_2 (lnL_{it} - \overline{lnL_t}) + \beta_3 (lnOpen_{it} - lnOpen_i)$$ $$+ \beta_4 (lnGPN_{it} - \overline{lnGPN_t}) + (v_{it} - \overline{v_t}) + (u_{it} - \overline{u_t})$$ (8) As shown in the equation (8), by subtracting equation (7) from equation (6), the time invariant effect, if not the neglected heterogeneity of the error term (ε) can be eliminated $(v_{it} - \overline{v_i}) = 0$. Thus, the following equation can be derived $$l\ddot{n}\ddot{Y}_{tt} = \beta_1 l\ddot{n}\ddot{K}_{tt} + \beta_2 l\ddot{n}\ddot{L}_{tt} + \beta_3 lnO\ddot{p}en_{tt} + \beta_4 lnG\ddot{p}N_{tt} + \ddot{u}_{tt}$$ (9) Equation (9) indicates time-demeaned data on both outcome and control variables. Though, the time invariant effect, if not the neglected heterogeneity of the error term, is eliminated from the model. The time varying error term $\vec{u_{it}}$ is still present in the equation causing weak exogeneity. However, the presence of weak exogeneity assumption along with no perfect collinearity amongst variables ensures that the fixed effects estimator, if not pooled OLS estimator, is consistent (Wooldridge 2016). Subsequently, this study employs the Hausman specification test to determine the most suitable estimator amongst fixed effects and random effects estimators. Further, equation (10) is derived with the inclusion of 1999 GDP Per Capita (Y99) as the initial GDP Per Capita that will be measuring economic growth rather than just the level of economic development, and this inclusion will evince the status of the convergence (Mankiw et al. 1992). However, as the initial GDP Per Capita is included, random effects estimator should be employed. Thus, each country's initial GDP Per Capita is time invariant. Therefore, initial GDP Per Capita is perfectly colinear with any other time invariant variable such as country fixed effects. This prevents fixed effects estimation and may cause other econometric issues (Baltagi 2005). $$lnY_{it} = \beta_0 + \beta_1 lnK_{it} + \beta_2 lnL_{it} + \beta_3 lnOpen_{it} + \beta_4 lnGPN_{it} + \beta_5 lnY99_{it} + \varepsilon_{it}$$ (10) Moreover, the equation (10) can be further altered by including a dummy variable (D_{it}) and an interaction term $(D2_{it})$ of the $GPN_{it}*D_{it}$ to detect a structural break in 2008 in order to identify the effect of global financial crisis on the linkage between global production sharing and economic growth (Dufour 1980). The dummy variable (D) takes a value of 1 if the year is greater than or equal to 2008. $$lnY_{it} = \beta_0 + \beta_1 lnK_{it} + \beta_2 lnL_{it} + \beta_3 lnOpen_{it} + \beta_4 lnGPN_{it} + \beta_4 lnY99_{it} + \beta_5 lnD_{it} + \beta_6 lnD2_{it} + \varepsilon_{it}$$ $$(11)$$ ## **CHAPTER 4: RESULTS AND DISCUSSION** Table 4.1: Estimates of Fixed Effects Models (Dependent Variable =
$lnY(GDP\ Per\ Capita)$ | | Model (1) | Model (2) | Model (3) | |-------------------------|------------|-------------|------------| | lnK | 0.5085*** | 0.5089*** | 0.4245*** | | | (0.0200) | (0.0180) | (0.0258) | | lnL | 0.2882** | 0.3542*** | 0.3559*** | | | (0.1255) | (0.1130) | (0.1084) | | lnOpen | | 0.2651*** | 0.0932* | | | | (0.0365) | (0.0525) | | lnGPN | | | 0.1040*** | | | | | (0.0236) | | Constant | -8.4665*** | -10.8276*** | -9.6919*** | | | (1.8255) | (1.6706) | (1.6237) | | R ₂ (within) | 0.8911 | 0.9126 | 0.9199 | | N | 228 | 228 | 228 | Note: "standard errors are in parentheses"; *p<0.1, **p<0.05, ***p<0.01 Table 4.2: Results of Hausman Specification Test | Variables | Coefficients | | (b-B) | sqrt(diag(V_b- | |-----------|--|------------|------------|----------------| | | | | | V_B)) | | | Fixed (b) | Random (B) | Difference | Standard Error | | lnK | 0.4245 | 0.5434 | -0.1188 | 0.0031 | | lnL | 0.3559 | -0.5748 | 0.9308 | 0.1004 | | lnOpen | 0.0932 | 0.1198 | -0.0266 | | | lnGPN | 0.1040 | 0.0875 | 0.0165 | | | chi2(4) | $83.68 ((b-B)'[(V_b-V_B) \land (-1)] (b-B))$ | | | | | Prob>chi2 | 0.0000 (Ho: difference in coefficients not systematic) | | | | Source: Author generated. At 5 percent level of significance, the Hausman test rejects the null hypothesis. Hence, the fixed effects model is appropriate in this context. As per the Table 4.1, three fixed effects models were estimated and the 3rd model delivers the estimates for the equation (9). The value of R-squared is 0.89 which says that 89 percent of the variation in log GDP Per Capita is jointly explained by the control variables. The generated R-squared value is the within value as it is generally of main interest, as it tells the variation of log GDP Per Capita within countries. Further, fixed effects estimator is also known as within estimator (Wooldridge 2016). As per the estimates of model (3), the amount of capital has a positive relationship with GDP Per Capita and it is statistically significant at 1 percent level. Thus, 10 percent increase in capital stock is associated with 4.2 percent increase in GDP Per Capita. The amount of labor has a positive relationship with GDP Per Capita and it is statistically significant at 1 percent level. Hence, 10 percent increase in labor supply is associated with 3.5 percent increase in GDP Per Capita. Further, trade openness has a positive relationship with GDP Per Capita and it is statistically significant at 10 percent level. Consequently, 10 percent increase in trade openness is associated with 0.9 percent increase in GDP Per Capita. However, as shown by the estimates of model (2) and model (3), the impact of trade openness on GDP Per Capita and the significance level have reduced as lnGPN variable is included into the model. Hence, this suggests that given the context of Asian countries, trade openness is less significant to GPN trade. Additionally, the inclusion of GPN trade as a control variable could rectify the omitted variable biasness in many empirical studies in this direction. More importantly, GPN trade has a positive relationship with GDP Per Capita and it is statistically significant at 1 percent level. Thusly, 10 percent increase in GPN trade is associated with 1 percent increase in GDP Per Capita. Table 4.3: Estimates of Random Effects Models (Dependent Variable = lnY(GDP Per Capita) | | Model (1) | Model (2) | | |--------------------------|------------|------------|--| | lnK | 0.5378*** | 0.4301*** | | | | (0.0255) | (0.0298) | | | lnL | -0.4982*** | -0.4857*** | | | | (0.0536) | (0.0527) | | | lnOpen | 0.1432** | 0.0118 | | | _ | (0.0569) | (0.0539) | | | lnGPN | 0.0759*** | 0.0931*** | | | | (0.0259) | (0.0235) | | | lnY99 | 0.1848** | 0.2276*** | | | | (0.0817) | (0.0796) | | | D | | -0.4128* | | | | | (0.1612) | | | D2 | | 0.0325*** | | | | | (0.0091) | | | Constant | 0.8029 | 3.1445** | | | | (1.4983) | (1.4644) | | | R ₂ (Overall) | 0.9342 | 0.9508 | | | N | 228 | 228 | | Note: "standard errors are in parentheses"; *p<0.1, **p<0.05, ***p<0.01 Table 4.3 shows the random effects estimations for equation 10 and 11. The coefficient on the initial GDP Per Capita (lnY99) is positive for these 12 Asian countries resulting no tendency towards convergence in the panel. Hence, there is no tendency for these Asian countries to grow faster on average than other rich countries in the world. Moreover, the inclusion of Y99 and the random effects estimator have resulted in a negative coefficient for amount of labor which is significantly different from the sign of the labor coefficient under the fixed effect model. This difference can be attributed to the effect of time dimension in the random effects model. However, all the other coefficients remain positive in both model 1 and 2. The model 2 shows the random effects estimation with the inclusions of both initial GDP Per Capita and the dummy variable for the structural break caused by the global financial crisis in 2008. The coefficient for the structural dummy variable (D) is negative. This indicates the negative impact of global financial crisis in 2008 on the effect of global production sharing in boosting economic growth after 2008. However, as shown by the model 2, GPN trade has a positive relationship with GDP Per Capita and it is statistically significant at 1 percent level. Further, the inclusion of 1999 GDP Per Capita (Y99) as the initial GDP Per Capita can measure the economic growth rather than economic development. Thus, it can be interpreted that 10 percent increase in GPN trade is associated with 0.9 percent increase in economic growth in these countries. This provides evidence that increase in GPS can stimulate economic growth in respective countries. Further, the causal impact of GPS on economic growth is higher than the impact of trade openness. Consequently, Asian countries should focus more on parts and components assembly exports in a GPN rather than depending solely on total trade volume. Moreover, further specializing in parts and components assembly can explicitly enhance the economic growth while implicitly generating more employment and poverty reduction as employment in respective industries increases. Consequently, the economic policies should be crafted and directed in such a way that they should enhance the level of GPN trade thereby stimulating the economic development. Fervent changes in the formation of contemporary globalized economy have reshaped the international trade and production activities while altering the organization of world industries and sovereign states into GPNs. As GPNs become a global trading phenomenon, instead of final goods, great amount of intermediate goods started trading across borders while exports consisting of more imported parts and components. As a remarkable milestone in the history of international trade, in 2009, world total exports of intermediate goods surpassed the combined export values of final and capital goods (Gerefffi and Luo 2019). Moreover, the existence of network trade has caused the firms to depend on the import of intermediates. Consequently, in the absence of GPS, government will have an incentive to act like mercantilists in trade negotiations (Baccini et al. 2014). Emerging economies have started playing intricate roles in harnessing the GPNs in the world. Aftermath of the global financial crisis, more trade has started growing between developing countries instead of with developed countries, which is the scenario referred as South-South trade (Athukorala and Nasir 2012). Thus, GPS has reintegrated the countries into a new face of global trade ultimately leading to economic development. As per empirical studies conducted in this direction, being a member of a GPN can result in productivity gains and income growth for developing countries. Cross-country estimates suggest that a 10 percent increase in GPN participation can lead to 1.6 percent increase in average productivity and 11 to 14 percent increase in Per Capita GDP (The World Bank 2019). More openness and the GPN integration are contributing to better economic performance. Figure 4.1: GPN Participation and Growth in Exports and Income Source: The World Bank (2019). In the Figure 4.1, GPN involvement has been measured using the percentage growth in foreign value added in exports. The figure clearly depicts that participation in GPN trade has positively correlated with total export and income growth. It has been a proven fact that economic development is a multi-dimensional phenomenon. It should start with economic growth with spillover effect of achieving higher level of employment, poverty reduction, distributional gains and reduction of gender gaps. Rodrik (2018) argues that countries become more capital intensive as they engage more in GPN, hindering employment opportunities of country's labor. However, 'GVCs boost exports, their overall effects on employment in developing countries have been positive. Even though production is becoming more capital-intensive and less job-intensive, the positive productivity effects at the firm level are (unexpectedly) good for scale and employment. Through scale effects, higher productivity is expanding aggregate output and employment. GVC firms tend to employ more workers than other firms' (The World Bank 2019, 77). Moreover, employment and income generation through GPS can support poverty reduction effectively (Athukorala 2014). Hence, the classical trade theories argue that trade can enhance the average income levels of the people through higher growth. Furthermore, effective monitoring of GPNs with public private partnership for upgrading of the production networks and accurate trade metrics can produce more effective policy intervention for poverty reduction (Lee et al. 2011). Some of the existing literature in this direction suggests that proliferation of PTAs can boost the countries' engagement in GPS,
thereby sustaining the growth momentum of their economies. After 1990, most of the countries in the world opted to sign deeper trade agreements by fragmenting the production internationally. Hence, deepening of trade agreements in the light of PTAs has been a major factor in the continuous rise in GPNs in the world (Laget et al. 2018). In contrast, some literature discusses the reverse causality with respect to above context by analyzing whether higher levels of GPS increase the likelihood of signing PTAs. According to Orefice and Rocha (2011), a 10 percent rise in the share of GPN over total trade volume increases the depth of the PTA by approximately 6 percentage points. Hence, there is a greater tendency that countries already involved in network trade by signing deeper agreements as per aforementioned findings. Yet, certain studies argue that not all PTAs contribute towards the growth of production networks. The analysis of the impact of PTA provisions on multinational production through network trade relies on the shallow or deep integration resulted by the signed PTA. Thus, it is established that only deep integration through PTAs has a positive and significant impact on network trade (Miroudot and Rigo 2019). The notion of shallow and deep integration was initially coined by Lawrence (1996) in his book 'Regionalism, Multilateralism, and Deeper Integration'. Empirical studies have identified the fact that shallow PTAs have a negative impact on cross-border production. Firms that offshore production are more likely to anticipate lower tariffs on re-imported products into their market. Hence, domestic firms are more willing to locate production stages in a PTA member that would result in lower tariffs on re-imported goods. (The World Bank 2017). As most of the literature assess the relationship between PTAs and GPS, it is evident that studies conducted by the World Bank and WTO are advocating towards signing deep PTAs in order to enhance the network trade. However, Bhagwati (2008), Athukorala (2010), Baldwin and Freund (2011) and Eckhardt and Lee (2018) convey a different opinion on signing PTAs to boost the network trade. According to Bhagwati (2008), proliferation of PTAs is neither favorable towards network trade nor towards the entire trading mechanism. Jagdish Bhagwati was the earliest to warn against PTAs starting in 1990 when he sensed that PTAs can be a systemic threat to the principle of nondiscrimination in international trade. Bhagwati sees Free Trade Agreements (FTAs) as two faced. Even though FTAs free trade among members, they increase protection against nonmembers. Bhagwati (2008) discerns the hindrance of PTAs as the 'Spaghetti bowl' effect of PTAs. This elaborates that PTAs are to reduce or eliminate tariffs only on specific products imported from a pertinent country. Supposedly, the existence of such kind of trading structure hampers the utilization of an optimal GPN due to different RoO. Hence, intermediate parts and components have to go through different PTAs based on different tariff structures in an effort to export final products to the consumer nations. Consequently, this could be visualized as crisscrossing strings of spaghetti in a bowl. Figure 4.2 depicts a sketch of the spaghetti bowl for Asia-Pacific FTA projects by June 2007. Figure 4.2: Asia-Pacific FTA Projects by June 2007 Source: Bhagwati (2008). Athukorala (2010) forewarns a parallel idea about PTAs. He argues that it is doubtful to perceive PTAs as an approach of trade liberalization owing to the fact that GPNs have proliferated encompassing many industries and countries. Moreover, the effectiveness of a PTA majorly depends on the nature of the RoO affiliated to the respective PTA. Thus, RoO can be harmful to network trade than to conventional trade due to the presence of high transaction costs and extensive bureaucratic supervision with respect to measuring of value added in production coming from different locations in the world. More importantly, in network trade, value addition is irrelevant. What matters most is the volume of the trade. Hence, RoO can be detrimental towards the affluence of GPNs. The economists who at least understand the Ricardian agreement would support free trade. Then why do we need trade agreements to lower tariffs. Each country can be unilaterally better off with a tariff, but jointly they both would lose. Hence, it is a prisoner's dilemma situation in the international trade (Baldwin and Freund 2011). The presence of PTAs in the trading platform magnifies the costs of network trade. The deadlock in the Doha round of WTO negotiations reveals the risk of countries detaching from free trade. It seems that hassle of PTA negotiations has impaired the nations' belief in free trade. It is a misconception to perceive PTAs as a solution of enhancing trade at the cost of establishing discrimination among countries in the world. The more world focuses on PTAs, the more world revisits the mercantilist view of trade. Supposedly, the time has dawned to focus our attention on unilateral reforms, which have been prudently successful in the past. The Chilean experience in imposing a lower uniform tariff on all the imports which ultimately raised the tariff revenue of the country remarkably is a classic case of practicing unilateral trade (Corbo 1997). Unilateral reforms with lower tariff rates and reduction of bureaucratic regulatory barriers that hinder the trade would expedite the custom procedure with increased tariff revenues. Purportedly, the world needs a trade liberalization which emphasizes on the need of unilateral trade reforms opening up trade to all the countries in the world without any discrimination. #### **CHAPTER 5: CONCLUSION** The emergence of GPS has reshaped the traditional trading platform in the world with implications of increasing revenues, employment generation and poverty reduction. This new phenomenon in international trade has empowered the developing nations in the world to enhance their production capacities. The empirical findings of the study suggest that GPS has a positive relationship with the economic growth. According to the estimates of fixed effects model, 10 percent increase in GPN trade is associated with 1 percent increase in GDP Per Capita. At this backdrop, it is very much prudent to design economic policies that positively influence the parts and components assembly exports. Hence, such policies can enhance and sustain the recent growth momentum in Asia. Moreover, the proliferation of PTAs has mixed effects on GPS with more weight on detrimental aspects of PTAs. Although the deep PTAs can increase the countries' participation in production sharing, the different tariff structures pertinent to different PTA member countries can hamper the utilization of an optimal GPN due to different RoO. Moreover, PTAs legally violate the Most Favored Nation (MFN) principle by engaging in discriminatory trade practices which can be detrimental towards the factual free trade in the world. Hence, the study points out the necessity to look beyond the prescriptions of PTAs. An innovative global trade paradigm empowered by the unilateral trade liberalization appears to be necessary in order to prevent the global economy dripping into incurably grave malaise. ## REFERENCES - Athukorala, P. 2009. 'Production Networks and Trade Patterns: East Asia in a Global Context'. Economics RSPAS Departmental Working Papers. Australia: Australian National University. ______. 2010. 'Production Networks and Trade Patterns in East Asia: - Regionalization or Globalization?'. ADB Working Papers, no. 56. Manila: Asian Development Bank. - . 2014. 'Growing with Global Production Sharing: The Tale of Penang Export Hub'. Competition and Change 18, no. 3: 221-245. - Athukorala, Prema-chandra, and Shahbaz Nasir. 2012. 'Global Production Sharing and South-South Trade'. Working Papers in Trade and Development, no. 2012/012. Australia: Australian National University College of Asia and the Pacific. - Baccini, L., A. Dür and M. Elsig. 2014. 'Global Supply Chains and the Political Economy of Preferential Tariff Liberalization'. General Conference of the European Consortium for Political Research, Glasgow, UK, September 2014. - Baldwin, Richard., and Caroline Freund. 2011. 'Preferential Trade Agreements and Multilateral Liberalization', in Chauffour, Jean-Pierre., and Jean-Christophe Maur, eds. Preferential Trade Agreement Policies for Development, 121-141. Washington DC: World Bank Group. - Balgati, B.H. 2005. Econometrics Analysis of Panel Data. 3rd ed. England: John Wiley & Sons Ltd. - Bhagwati, J. 2008. Termites in the Trading System: How Preferential Agreements Undermine Free Trade. New York: Oxford University Press. - Bruhn, D. 2014. 'Global Value Chains and Deep Preferential Trade Agreements: Promoting Trade at the Cost of Domestic Policy Autonomy?', Discussion Paper, no. 23/2014. Bonn: German Development Institute. - Carbaugh, R.J. 2008. International Economics. 12th ed. United States: South-Western College Publications. - _____. 2010. International Economics. 13th ed. Boston, Massachusetts: Cengage. - Corbo, V. 1997. 'Trade Reform and Uniform Import Tariffs: The Chilean Experience'. The American Economic Review 87, no. 2: 73-77. - Degain, Christophe, Bo Meng and Zhi Wang. 2017. 'Recent Trends in Global Trade and Global Value Chains', in Global Value Chain Development Report 2017: Measuring and Analyzing the Impact of GVCs on Economic Development, 37-68. Washington DC: World Trade Organization. - Dufour, J-M. 1980. 'Dummy Variables and Predictive Tests for Structural Change'. Economics Letters 6, no. 3: 241-247. - Eckhardt, J., and K. Lee. 2018. 'Global Value Chains, Firm Preferences and the Design of Preferential Trade Agreements'. Global Policy 9, no. 2: 58-66. - Feenstra, R.C. 2010. 'Measuring the Gains from Trade Under Monopolistic Competition'. Canadian Journal of Economics 43, no. 1: 1-28. - Gerefffi,
Gary, and Xubei Luo. 2019. 'Risks and Opportunities of Participation in Global Value Chains', Policy Research Working Paper, no. 6847. Washington DC: World Bank Group. - Haddad, M. 2007. 'Trade Integration in East Asia: The Role of China and Production Networks', World Bank Policy Research Working Paper, no. 4160. Washington DC: World Bank Group. - Hayakawa, Kazunobu, and Nobuaki Yamashita. 2011. 'The Role of Preferential Trade Agreements (PTAS) in Facilitating Global Production Networks'. IDE Discussion Papers, no. 280. Japan: Institute of Developing Economies. - Hiratsuka, D. 2011. 'Production Networks in Asia: A Case Study from the Hard Disk Drive Industry', ADBI Working Paper Series, no. 301. Tokyo: Asian Development Bank Institute. - Hume, David.3 1969. On the Balance of Trade, edited by Richard N Cooper. Baltimore: Penguin Books. - Jones, Ronald W., and Henryk Kierzkowski. 2000. 'A Framework for Fragmentation'. Fragmentation: New Production Patterns in the World Economy. United States: Oxford University Press. - Krugman, P.R. 1979. 'Increasing Returns, Monopolistic Competition, and International Trade'. Journal of International Economics 9: 469-479. المنارة للاستشارات ³ David Hume, "On the Balance of Trade", originally written in 1752 and reprinted by R Cooper (ed), Penguin Books, Baltimore. - Laget, Edith, Albert Osnago, Nadia Rocha, and Michele Ruta. 2018. 'Trade Agreements and Global Production'. VOX, CEPR Policy Portal. https://voxeu.org/article/trade-agreements-and-global-production. - Lawrence, R.Z. 1996. Regionalism, Multilateralism, and Deeper Integration. Washington DC: The Brookings Institution. - Lee, Joonkoo, Gary Gereff and Stephanie Barrientos. 2011. 'Global Value Chains, Upgrading and Poverty Reduction', Capturing the Gains Briefing Note, no. 3. - Mankiw, N.G., D. Romer, and D.N. Weil. 1992. 'A Contribution to the Empirics of Economic Growth'. The Quarterly Journal of Economics: 407-437. - Miroudot, Sébastien, and Davide Rigo. 2019. 'Preferential Trade Agreements and Multinational Production'. EUI Working Papers, no. 2019/14. Italy: Robert Schuman Centre for Advanced Studies. - Orefice, Gianluca, and Nadia Rocha. 2011. 'Deep Integration and Production Networks: An Empirical Analysis', Staff Working Paper, no. 11. Geneva: World Trade Organization. - Ricardo, D. 1817. On the Principles of Political Economy, and Taxation. 3rd ed. London: John Murray. - Rodrik, D. 2018. 'What do Trade Agreements Really Do?'. NBER Working Paper, no. 24344. Cambridge: National Bureau of Economic Research. - Sen, K. 2014. 'Global Production Networks and Economic Corridors: Can They be Drivers for South Asia's Growth and Regional Integration?'. ADB South Asia Working Paper Series, no. 33. Manila: Asian Development Bank. - Smith, A. 1776. An Inquiry into The Nature and Causes of The Wealth of Nations. 5th ed. London: Methuen & Co., Ltd. - Solow, R.M. 1956. 'A Contribution to the Theory of Economic Growth'. The Quarterly Journal of Economics 70, no. 1: 65-94. - The World Bank. 2017. Global Value Chain Development Report 2017: Measuring and Analyzing the Impact of GVCS on Economic Development. Washington DC: World Bank Group. - _____. 2019, World Development Report 2020: Trading for Development in the Age of Global Value Chains. Washington DC: World Bank Group. - Wooldridge, J.M. 2016. Introductory Econometrics. 6th ed. Boston, Massachusetts: Cengage. - World Trade Organization. 2019. Preferential Trade Arrangements. Geneva: World Trade Organization. . ## APPENDIX A: PARTS AND COMPONENTS Table A.1: Parts and Components, at the Five-Digit Level of SITC Revision 3 | 58291 | Cellular plastic sheet | 71381 | Spark-ign piston eng nes | |-------|--------------------------|-------|--------------------------| | 58299 | Non-cellular plast sheet | 71382 | Diesel engines nes | | 59850 | Doped chemicals (electr) | 71391 | Parts nes spark-ign engs | | 61290 | Leather manufactures nes | 71392 | Parts nes diesel engines | | 62141 | Uh rubber tube no fittng | 71441 | Turbo-jets | | 62142 | Uh metal-reinf rubr tube | 71449 | Reaction engines nes | | 62143 | Uh text-reinf rubbr tube | 71481 | Turbo-propellers | | 62144 | Uh nes-reinf rubber tube | 71489 | Other gas turbines nes | | 62145 | Uh rubber tube + fitting | 71491 | Parts nes turbo-jet/prop | | 62921 | Conveyor/etc belts v | 71499 | Parts nes gas turbines | | | Uh non-cell rub articles | 71610 | Electric motors <37.5w | | 65621 | Woven textile labels etc | 71620 | Dc motor(>37w)/generator | | 65629 | Non-woven text label etc | 71631 | Ac,ac/dc motors >37.5w | | 65720 | Non-woven fabrics nes | 71632 | Ac generators | | 65751 | Twine/cordage/rope/cable | 71651 | Gen sets with pistn engs | | 65752 | Knotted rope/twine nets | 71690 | Pts nes motors/generator | | 65771 | Textile wadding nes etc | 71819 | Parts nes hydraul turbin | | 65773 | Industrial textiles nes | 71878 | Nuclear reactor parts | | 65791 | Textile hosepiping etc | 71899 | Parts nes of engines nes | | 65792 | Machinery belts etc,text | 72119 | Agric machinery parts | | 66382 | Asbestos manuf-friction | 72129 | Pts nes of machy of 7212 | | 66471 | Tempered safety glass | 72139 | Pts nes dairy machinery | | 66472 | Laminated safety glass | 72198 | Parts wine/etc machines | | 66481 | Vehicle rear-view mirror | 72199 | Pts nes agric machines | | 66591 | Laboratory etc glass | 72391 | E-m bucket/grab/shovels | | 66599 | Other glass articles nes | 72392 | Bulldozer etc blades | | 69551 | Band saw blades | 72393 | Boring/sink machry parts | | 69552 | Steel circular saw blade | 72399 | Pts nes earth-movg mach | | 69553 | Circular saw blades nes | 72439 | Sew mch needles/furn/pts | | 69554 | Chain saw blades | 72449 | Pts nes textile machines | | 69555 | Straight saw bl for metl | 72461 | Auxil weave/knit machine | | 69559 | Saw blades nes | 72467 | Weaving loom parts/acces | | 69561 | Cutting blades for machn | 72468 | Loom/knitter etc pts/acc | | 69562 | Carbide tool tips etc | 72488 | Parts for leather machns | | 69563 | Rock etc drilling tools. | | Washing machine parts | | 69564 | Parts to insert in tools | 72492 | Textile machinry pts nes | | 69680 | Knives and blades nes | | Paper manuf machine pts | | | | | | | 60015 | Base mtl vehicle fitment | 72500 | Papar product much parts | |-------|---------------------------|-------|---| | | Base metal buckles etc | | Paper product mach parts Printing type,plates,etc | | | Pts nes of boilers 711.1 | | Parts of bookbind mchn | | | | | Type-setting machn parts | | | Pts nes boiler equ 711.2 | | • | | | Stm turbine(712.1) parts | | Printing press parts | | | Aircraft piston engines | | Cereal/dry legm mach pts | | | Pts nes a/c piston engs | | Indus food proc mach pts | | | Recip piston engs<1000cc | | Pts nes of machy of 7283 | | | Recip piston engs>1000cc | | Isotopic separators | | | Diesel etc engines | | Glass-working machy part | | | Marine spark-ign eng nes | | Plastic/rubber mach part | | | Marine diesel engines | | Tobacco machinery parts | | | Parts nes, machines 7284 | | Tap/cock/valve parts | | | Tool holder/slf-open die | | Ball/roll bearing housing | | | Metal mch-tl work holder | | Bearing housings nes | | | Dividing head/spec attach | | Iron/stl articulated link chain parts | | | Pts nes metal rmvl tools | | Gears and gearing | | | Pts nes mtl nonrmvl tool | | Flywheels/pulleys/etc | | | Foundry machine parts | | Clutches/sh coupling/etc | | | Roll-mill pts nes, rolls. | | Gear/flywheel/cltch part | | | Mtl weld/solder eq parts | | Metal clad gaskets | | | Parts gas welders etc. | | Ships propellers/blades | | | Furnace burner parts | | Mach parts nonelec nes | | | Elect furnace/oven parts | | Digital processing units | | 74139 | Parts ind non-el furn/ov | | Adp peripheral units | | 74149 | Pts nes indus refrig equ | 75270 | Adp storage units | | 74155 | Air-conditioners nes | | Adp equipment nes | | 74159 | Air-conditioner parts | 75991 | Typewrtr parts, acces nes | | 74172 | Water proc gas gen parts | 75993 | Dupl/addr mach parts etc | | 74190 | Parts indus heat/cool eq | 75995 | Calculator parts/access. | | 74220 | Piston eng fuel/wtr pump | 75997 | Adp equip parts/access. | | 74291 | Pump parts | 76211 | Mtr vehc radio/player | | 74295 | Liquid elevator parts | 76212 | Mtr vehc radio rec only | | 74363 | Engine oil/petrol filter | 76281 | Other radio/record/play | | 74364 | Engine air filters | 76282 | Clock radio receivers | | 74391 | Parts for centrifuges | 76289 | Radio receivers nes | | 74395 | Parts filters/purifiers | 76432 | Radio transceivers | | 74419 | Trucks pts nes | 76491 | Telephone system parts | | | Jacks/hoists nes hydraul | 76492 | Sound reprod equip parts | | | Parts for winches/hoists | | Telecomm equipmt pts nes | | 74492 | Lift truck parts | | Parts etc of sound equip | | | Lift/skip h/escalat part | | Liquid dielec transfrmrs | | | Lifting equip parts nes | | Other elec transformers | | | Pts nes of tool of 7451 | | Inductors nes | | | Packing etc mchy pts nes | | Pts nes elec power mach. | | | Weighng mach wts,pts nes | | Printed circuits | | | <i>5 6</i> | - | | | 74560 Canavina machinamy nauta | 77021 Fixed souless resistant | |---------------------------------|---------------------------------| | 74568 Spraying machinery parts | 77231 Fixed carbon resistors | | 74593 Rolling machine parts | 77232 Fixed resistors nes | | 74597 Automatic vending machs | 77233 Wirewound var resistors | | 74610 Ball bearings | 77235 Variable resistors nes | | 74620 Tapered roller bearings | 77238 Elect resistor parts | | 74630 Spherical roller bearing | 77241 High voltage fuses | | 74640 Needle roller bearings | 77242 Auto circuit breakr | | 74650 Cyl roller bearings nes | 77243 Other auto circuit brkrs | | 74680 Ball/roller bearings nes | 77244 Hi-volt isolating switch | | 74691 Bearing ball/needle/roll | 77245 Limiter/surge prtect etc | | 74699 Ball etc bearng
part nes | 77249 Hi-volt equipment nes | | 74710 Pressure reducing valves | 77251 Fuses (electrical) | | 74720 Pneumat/hydraulic valves | 77252 Automatic circuit breakr | | 74730 Check valves | 77253 Circuit protect equi nes | | 74740 Safety/relief valves | 77254 Relays (electrical) | | 74780 Taps/cocks/valves nes | 77255 Other switches | | 77257 Lamp holders | 77831 Ignition/starting equipm | | 77258 Plugs and sockets | 77833 Ignition/starting parts | | 77259 El connect equ nes<1000v | 77834 Veh elect light/etc equ. | | 77261 Switchboards etc <1000v | 77835 Veh elect light/etc part | | 77262 Switchboards etc >1000v | 77861 Fixed power capacitors | | 77281 Switchboards etc unequip | 77862 Tantalum fixd capacitors | | 77282 Switchgear parts nes | 77863 Alum electrolyte capacity | | 77311 Winding wire | 77864 Ceram-diel capacit sngle | | 77312 Co-axial cables | 77865 Ceram-diel capacit multi | | 77313 Vehicle etc ignition wir | 77866 Paper/plastic capacitor | | 77314 Elect conductor nes <80v | 77867 Fixed capacitors nes | | 77315 El conductor nes 80–1000 | 77868 Variable/adj capacitors | | 77317 El conductor nes >1000v | 77869 Electrical capacitr part | | 77318 Optical fibre cables | 77871 Particle accelerators | | 77322 Glass electric insulator | 77879 Parts el equip of 778.7 | | 77323 Ceramic elect insulators | 77881 Electro-magnets/devices | | 77324 Other electrc insulators | 77882 Elec traffic control equ | | 77326 Ceram elec insul fit nes | 77883 Elec traffic control pts | | 77328 Plastic el insul fit nes | 77885 Electric alarm parts | | 77329 Other elec insul fit nes | 77886 Electrical carbons | | 77423 X-ray tubes | 77889 Elec parts of machy nes | | 77429 X-ray etc parts/access. | 78410 Motor veh chassis+engine | | 77549 Electr shaver/etc parts | 78421 Motor car bodies | | 77579 Parts dom elect equipment | 78425 Motor vehicle bodies nes | | 77589 Domest el-therm app part | 78431 Motor vehicle bumpers | | 77611 Tv picture tubes colour | 78432 Motor veh body parts nes | | 77612 Tv picture tubes monochr | 78433 Motor vehicle brake/part | | 77621 Tv camera tubes etc | 78434 Motor vehicle gear boxes | | 77623 Cathode-ray tubes nes | 78435 Motor veh drive axle etc | | 77625 Cathode Tay tabes hes | 78439 Other motor vehcl parts | | , , 525 Inition and tables | 70107 Outer motor vener purts | | | Electronic tubes nes | | Parts/access motorcycles | |-------|---------------------------|-------|----------------------------| | | Electrnic tube parts nes | 78536 | Parts/acces inv carriage | | | Diodes exc photo-diodes | | Parts, acces cycles etc | | 77632 | Transistors <1 watt | 78689 | Trailer/semi-trailer pts | | 77633 | Transistors >1 watt | 79199 | Rail/tram parts nes | | 77635 | Thyristors/diacs/triacs | 79283 | Aircraft launchers etc | | 77637 | Photo-active semi-conds | 79291 | Aircraft props/rotors | | 77639 | Semi-conductors nes | 79293 | Aircraft under-carriages | | 77649 | Integrated circuits nes | 79295 | Aircraft/helic parts nes | | 77681 | Piezo-elec crystals,mntd | 79297 | Air/space craft part nes | | 77688 | Piezo-elec assmbly parts | 81211 | Radiators, parts thereof | | 77689 | Electrnic compon pts nes | 81215 | Air heat/distrib equipmt | | 77812 | Electric accumulators | 81219 | Parts for c-heat boilers | | 77817 | Primary batt/cell parts | 81380 | Portable lamp parts | | | Elec accumulator parts | 81391 | Glass lighting parts | | 77821 | Elec filament lamps nes | 81392 | Plastic lighting parts | | 77822 | Elec discharge lamps nes | 81399 | Lighting parts nes | | | Sealed beam lamp units | 82111 | Aircraft seats | | | Ultra-v/infra-r/arc lamp | 82112 | Motor vehicle seats | | 77829 | Pts nes of lamps in | 82113 | Bamboo/etc seats/chairs | | 82119 | Parts of chairs/seats | 89395 | Plastc furniture fittngs | | 82180 | Furniture parts | 89890 | Musical instr parts/acc. | | | Girdles/corsets/braces | | Cig lighter parts/access | | 84842 | Headgear plaited | | Parts nes umbrella/canes | | 84848 | Parts for headgear | 89983 | Buttons/studs/snaps/etc | | | Binoc/telescope part/acc | | Slide fasteners | | 87139 | Electron/etc diffr parts | 89986 | Slide fastener parts | | | Microscopes parts/access | | War munitions/parts | | | Parts/access for 8719 | | Pistol parts/accessories | | 87319 | Gas/liq/elec meter parts | | Shotgun/rifle parts nes | | | Speed etc indicators | | Military weapon part nes | | | Meter/counter parts/acc. | 89281 | Labels paper,paperboard | | | Navigation inst parts/acc | | Survey instr parts/acc. | | | Pts nes inst in SITC 8742 | | Meas/check instr parts/acc | | 87439 | Fluid instrum parts/acc | 87454 | Mech tester parts/accs | | | Thermometer etc parts/acc | | Thermostats | | | Pressure regulators/etc | 87469 | Regul/cntrl inst parts/acc | | | Elec/rad meter parts/acc | | Instrument part/acc nes | | | Photo flashlight equipmt | | Camera parts/accessories | | | Flashlight parts/access | | Movie camera parts/acc. | | | Movie projector part/acc | | Photo equip nes part/acc | | | Photo, cine lab equip ne | | Spectacle frame parts | | | Camera/etc objectiv lens | | Objective lenses nes | | | Optical filters | | Mounted opt elements nes | | | Instr panel clocks/etc | | Clocks nes | | | Watch cases, case parts | | Watch straps/bands metal | | | r | | T | 88593 Watch strap/band non-mtl 88597 Clock cases, case parts 88598 Clock/watch mmnts unass 88599 Clock/watch parts nes 89111 Armoured tanks/etc Source: Athukorala, Prema-chandra, and Tala Talgaswatta. 2016. 'Global Production Sharing and Australian Manufacturing'. Australia: Department of Industry, Innovation and Science of Australia.